Intermittency and velocity fluctuations in hopper flows prone to clogging.
نویسندگان
چکیده
We study experimentally the dynamics of granular media in a discharging hopper. In such flows, there often appears to be a critical outlet size D_{c} such that the flow never clogs for D>D_{c}. We report on the time-averaged velocity distributions, as well as temporal intermittency in the ensemble-averaged velocity of grains in a viewing window, for both DD_{c}, near and far from the outlet. We characterize the velocity distributions by the standard deviation and the skewness of the distribution of vertical velocities. We propose a measure for intermittency based on the two-sample Kolmogorov-Smirnov D_{KS} statistic for the velocity distributions as a function of time. We find that there is no discontinuity or kink in these various measures as a function of hole size. This result supports the proposition that there is no well-defined D_{c} and that clogging is always possible. Furthermore, the intermittency time scale of the flow is set by the speed of the grains at the hopper exit. This latter finding is consistent with a model of clogging as the independent sampling for stable configurations at the exit with a rate set by the exiting grain speed [C. C. Thomas and D. J. Durian, Phys. Rev. Lett. 114, 178001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.178001].
منابع مشابه
epl draft Orientation, Flow, and Clogging in a Two-Dimensional Hopper: Ellipses vs. Disks
Two-dimensional (2D) hopper flow of disks has been extensively studied. Here, we investigate hopper flow of ellipses with aspect ratio α = 2, and we contrast that behavior to the flow of disks. We use a quasi-2D hopper containing photoelastic particles to obtain stress/force information. We simultaneously measure the particle motion and stress. We determine several properties, including dischar...
متن کاملSignatures of incipient jamming in collisional hopper flows
Many disordered systems experience a transition from a fluid-like state to a solid-like state following a sudden arrest in dynamics called jamming. In contrast to jamming in spatially homogeneous systems, jamming in hoppers occurs under extremely inhomogeneous conditions as the gravity-driven flow of grains enclosed by rigid walls converges towards a small opening. In this work, we study veloci...
متن کاملAnisotropic homogeneous turbulence: hierarchy and intermittency of scaling exponents in the anisotropic sectors.
We present the first measurements of anisotropic statistical fluctuations in perfectly homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors and hierarchical ordering of anisotropies on a direct numerical simulation of a three dimensional random Kolmogorov flow. We achieved an homogeneous and anisotropic statistical ensemble by randomly shifting the forci...
متن کاملRadial evolution of solar wind intermittency in the inner heliosphere
We analyzed intermittency in the solar wind, as observed on the ecliptic plane, looking at magnetic field and velocity fluctuations between 0.3 and 1 AU, for both fast and slow wind and for compressive and directional fluctuations. Our analysis focused on the property that probability distribution functions of a fluctuating field affected by intermittency become more and more peaked at smaller ...
متن کاملThe influence of migrating bed forms on the velocity-intermittency structure of turbulent flow over a gravel bed
[1] Modeling turbulent flows at high Reynolds number requires solving simplified variants of the Navier-Stokes equations. The methods used to close the resulting Reynolds-averaged, or eddy simulation equations usually follow classical theory and, at small enough scales, postulate universal scaling for turbulence that is independent of the velocity itself. This may not be the best way to concept...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 94 2-1 شماره
صفحات -
تاریخ انتشار 2016